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Functions of the free field : examples for essentially local 
non-localizable fields 

W Lucke 
Institut fur Theoretische Physik der Technischen Universitat Clausthal, 3392 
Claustal-Zellerfeld, Germany 

Received 29 July 1974 

Abstract. By extensive use of methods developed by Rieckers it is shown that power series 
of the free field, while not strictly localizable in general, are essentially local with respect to 
all those Gel’fand spaces s” on which they can be defined at all. 

1. Introduction 

In a previous paper (Bummerstede and Lucke 1974) the notion of essential locality was 
introduced as a natural generalization of locality for non-localizable fields, ie for fields 
defined on test spaces not containing functions with compact support in x space. It 
was claimed that examples for non-localizable fields fulfilling essential locality, which are 
not just restrictions of localizable fields to non-localizable test spaces, do in fact exist? 
and are provided by functions of the free field as treated by Rieckers (1971). The purpose 
of the present paper is to prove this statement. 

As in the preceding paper (Bummerstede and Lucke 1974) we shall restrict our dis- 
cussion to a single type of neutral scalar particle with mass m > 0, described by the 
hermitian Wightman field A ( x )  on the Gel’fand space (Gel’fand and Schilow 1962, 
Rieckers 1971) Ss(R4) = S”.“~”.”, s 2. 0. This means the usual Wightman axioms (Streater 
and Wightman 1964) are required to hold with just two modifications : 

(i) Locality is to be replaced by essential locality (reviewed below). 
(ii) The Schwartz space 9 ( R 4 )  of tempered functions is to be replaced by the 

Let D be the common invariant dense domain of the field operators (smeared fields) in 
the Hilbert space of states X Then (Bummerstede and Lucke 1974, Lemma 2) the 
vacuum expectation values 

Gel’fand space Ss(R4), s 2 0. 

<@l[A(x), 4Y)l IW? Q9 E D (1.1) 
primarily defined as bilinear functionals over Ss(R4) x Ss(R4), have a unique extension to 
continuous linear functionals (generalized functions) over Ss(R8) = Ss(R4)@Ss(R4). 
This allowed the following two definitions (Bummerstede and Lucke 1974): 

A subset S of Ss(R8) is called locally bounded on$ 

V8 ( a  = (XI, x2) E RE: (XI - x #  >, 0) 

t Of course, we do not know explicit examples with non-trivial scattering. 
$We use standard notation as in the preceding paper (Biimmerstede and Liicke 1974) 
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if there are positive constants e, A such that 

rpss feU.(Vs)  deZ 
sup sup sug A-l"la-sil(aIINl~'"(a)( < 30 

holds for every non-negative integer N .  The field A(x) on Ss(R4) is called essentially local 
if 

for arbitrary 0, Y E D and for every subset S of Ss(R4) which is locally bounded on V,. 

2. Functions of the free field 

The convergence of power series 

of the free hermitian Wightman field A o ,  mass m > 0, was extensively analysed by 
Rieckers (1971). By inspection of his methods and results we get almost complete 
information about the solution of our problem. Therefore, let us briefly review Rieckers' 
results as far as they are relevant for our purposes. 

Let 2 be the Fock space of the free field, 11 . 1 1  its norm, and R the Fock vacuum. 
Consider s E [0, 1) and, in case s > 0, suppose 

(dA2 sup - exp( - rb) < m 
r c Z t  r !  

for some b E (1, l/s). Then, for q, $ j  E Ss(R4), Rieckers proved that the strong limits 

k = 0 , 1 ,  . . .  N d  k 

s-lim n : A $ : ( $ ~ )  2 $:AL:(q)y, 
N + w  j = 1  r = O  

exist in yi4 where the vector Y E 2 may be recursively taken of the form 

ir A(q, )Q;  n = 0, 1,2, .  . . 
k =  1 

(2.3) 

with arbitrary q l , .  . . , qn E Ss(R4). Hence, if we define D to be the linear hull of the set 
of all vectors of the form (2.4) and if d l  # do = 0, (2.1) has a natural definition as a scalar 
Wightman field A(x) on Ss(R4) with dense invariant domain D in X We postulate 
dr = d,*, hence A(x) is hermitian. 

Moreover, suppose 

for some so E (s, 1). Then the two-point function 

<RlA(x 1 )A(xz)lR) 
cannot be extended to a continuous linear functional over Sso(Rx).  As a consequence, 
the field is necessarily non-localizable. We rephrase Rieckers' argument in order to 
show that also the vacuum expectation value of the field commutator cannot be defined 
on Ssa(RR): 
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Let {,&}k,,+ c S(E8) be a partition of unity. S O  all the & have non-negative values 
and for arbitrary ci, E Sso(R8) the series 

m 

1 $ k  = 43 $k E g k $  
k = O  

converges in the topology of Fo(R8).  The g k  may be chosen so that 

g k ( P I 5  P2) = g k ( P 2  9 PI) 

holds for all p l ,  p2 E R4. Moreover, let us choose some h“, E SY0(R4) fulfilling 

kh”,(-p) = R+(p) = e x p ( - f ~ [ ~ p O + ~ ~ + m ~ ) ’ ’ ~ ] ~ ’ ~ ~ j  

for given a > 0 and for all p E R4 with po 2 i m ,  and define 

ci,.(PI 9 P2) = h+(PI)h”-(P2). 
Now, if the vacuum expectation value of the field commutator could be extended to a 
generalized function over Sso(R8),  we had [ p y  = (p: + w I ~ ) ” ~ ]  : 

Since the latter expression is a sum over non-negative terms, we could interchange 
summations and obtain : 

However, for sufficiently small a the sum on the RHS is divergent, since we have (2.5) and 
since (Rieckers 1971) 

1 n -+.( dP1 - i PI, + i PI) 2 c l [~(a) l rexP(- r””o)  
I = 1  2Pf I =  1 f = 1  

holds with R(a) + x for a --f 0. We conclude: At least for Y = 0 = R (1.1) cannot be 
extended to a generalized function over Sso(R8), therefore A(x) is necessarily non- 
localizable. 

So we are left to prove essential locality of the field (2.1) under the above conditions. 

3. Fundamental local estimates 

For a siiccessful analysis of the convergence of (2.1) global estimates on distributions of 
the form 

[iA;(xl -x2)Irl z[iA:(xl - x ~ ) ] ‘ ~ . ~ .  . . [iA:(xn-l -xn)Irn I , “  
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~ dAA?$(A)cp(t) 

turned out to be sufficient (Rieckers 1971). In order to prove essential locality of A ( x )  
we need local estimates on distributions of the form 

AzAY(x1.. ' ' 3 x,) 

1 = { [iA;(x,,, - x,. + ) ] ' n ' . n ' + '  - [iA;(X,,+ - x n , ) ] * n ' . n ' +  1 

X n [iA:(Xj-Xk)]rJ,k 
O < j < k < n  

( j . k ) # ( n ' , n ' +  1) 

with respect to the region x,. - x,. + E 

e, A,  B,  we have t J  find an asymptotically sufficiently small functional M(rj,k) fulfilling 
More precisely, given positive constants 

< M(rj,k) 

While the rj,k may be arbitrary non-negative integers for ( j ,  k )  # (n ' ,  n' + l), r,,,,,,.+ is 
an arbitrary positice integer. In order to get such estimates, we modify Rieckers' technique 
in the following way : 

Using difference variables 

~ l ~ x l - x l + ~ ; j =  1, . . . ,  n ( x n +  1 = 01, 
define 

j = n  1 4t1, , . . ,  t f1-1)  dtnq t j , . . . ,  5j j (j:l 

and take a suitable multiplier g E C r M ( R 4 )  with g(x) = 1 in some neighbourhood of i? 
Then, recalling that odd Lorentz invariant Schwartz distributions have supports con- 
tained in y we have 

for every non-negative integer K ,  where 
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Consequently?, 

and (Rieckers 197 1) : 

,.r - 1 (3.4) 
< C’m-‘ for 1 > 2r > 0. 

( r - l ) ! ( / - 2 r )  

The four-momenta p j ,  p j , k , l  are always on-shell, ie: 

p y  = (Pj +m2)l i2 ,  P i k , l  (P ; ,k , l  f m2)1’2 .  

Now the problem is to suitably choose g and the non-negative integers K = K(R,),  
Lj  = Lj(Rj) in order to make the RHS of (3 .3 )  asymptotically ( r j , k  + a)  sufficiently small. 

Let us first estimate J ( q ,  K ;  L , ,  . . . , L,,). By 

(4’4’) = (4.. - q ’ ) ( q n ,  - 4’) - 2qn,(qn, - 4’) + q n ’ q n ,  

we may write 

(q’q’)K = c b,,,q:,(qll, - q’IP 

lb,,Pl < C K .  

a.BEZ4, 
111 + l b I = 2 K  

with 

Therefore, since 

2 2 C K f L  max max dq’(qho)Lng(q:l - q’)(& -q’)P 
p.24, q!;.R4 

I51 2 K  

t We adopt the convention that constants C, C , ,  . . . may have different values in different lines! 
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where 
n -  1 
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L z c Lj .  
j =  1 

In configuration space we thus obtain 

4% K ;  L , ,  . . . 3  L,) 

and hence by (3.2) for fixed A,  B 

4% K ;  L,, . . . , L,) 

We may choose a non-negative function 6, E S2(R4) with 

dxd,(x) = 1 s 
and (Gel'fand and Schilow 1962): 

de(X) = 0 for lIx1( > e/4. 

Next define 

g(x) = j dx'6,(x - x'). 
U./Z(V) 

Then we have g E GM(R4) and 

1 if x E U+( V )  i 0 if x 4 U,(V). g(x) = 

Moreover, 

SUP Iahg(x)I < C1 max taAJe(x)I 
X E R ~  x e R 4  

< C,C'P' 

holds for all 1 E Z, .  With this choice for g we finally have 

J ( q ,  K ;  L, ,  . . . , L,,) < C,CK+L+LnLn3Ln(L+2K)S(L+2K) .  

Thus, putting 

L,, = 2R,,+1, 

K j  = Lj/2 

K,, = K 
fo r j  < n 
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sup 1 5 dRW,,,,(R)cp(A) 
(PES 

(3.3) and (3.4) yield 

< cc 

I , .  I n 

(3.5) 

for all integer K j  > R j  and for all cp E SS((R4") fulfilling (3.2). 

4. Proof of essential locality 

Now we are well prepared for the proof of essential locality of the fields A ( x )  defined 
in 5 2. 

Liicke 1974) over Ss(R4"): 
For 0 < n' < n define the following generalized function (see Biimmerstede and 

n 

Thus, recalling the local estimates (3.5), it is quite sufficient to prove convergence of 
the series 

m 
d r l  ' ' ' drn CRR4Rn , fi [ C K ( R J z S R [  2 ] K ( R I )  

I =  1 
c c -  1 1  I 

r i ,  ..., r n =  1 rJ ,*ER(r I  ,..., r d  r 1 , 2  . r1 ,3  . . . . r i ~ -  1 , n .  

for at least one integer valued function K(r )  > r. For s = 0 we only have to choose K ( r )  
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of sufficiently rapid increase in order to guarantee convergence of (4.1). For s > 0, 
on the other hand, (2.2) holds by assumption and therefore a simple estimate (compare 
Rieckers 1971, Lemma 2) gives 

Id,, . . . dJ  2 n r j , k ! C $ , k  

O < j < k < n  

We choose K(r)  such that 

rb < K ( r )  G 1 + r b  

holds for all r E 2,. This ensures 

with S E 1 -sb > 0, so (4.1) may be majorized by 

rL 

C, n C $ k ( r j , k ) - ' r ; . k  

O < j < k Q i i  r , , k = O  

which is obviously convergent. Hence A ( x )  is essentially local in both the cases s = 0 
and s > 0. 

5. Conclusions 

We have seen that an arbitrary power series of the free field A , ( x )  

" d  
,=0 r .  44 = < :A', :(x) 

is essentially local with respect to every Ss(R4), 0 < s < 1, on which it can be defined. 
The proof of essential locality was based on essentially the same estimates necessary 
for just the definition of A(x) .  Hopefully, this is a general feature of essential locality. 

While localizability of the vacuum expectation values of the field A ( x )  requires certain 
restrictions on the growth of the d, for r + CO, there are no restrictions whatsoever for 
the field to be defined (and hence essentially local) on S0(R4). We conclude that essential 
locality is more general than ordinary locality. 

Of course, functions of the free field are trivial when regarded as 'interacting' fields. 
For a natural definition of non-localizable superpropagators, however, essential locality 
of power series of the free field turns out to be a very useful property (J Bummerstede, 
thesis in preparation). 
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